\square
VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
B.E. (IT) IV Year I-Semester Supplementary Examinations, May-2019

Artificial Intelligence
Time: 3 hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A $(10 \times 2=20$ Marks $)$

1. What is a Turing Test?
2. Find the Optimal Solution for Water Jug problem.

Water Jug problem: Mug A capacity is 5 Ltr . Mug B capacity is 3 Ltr .
Goal State : Get 4 Ltr of water in 5Ltr Mug
3. Compare \& Contrast "State space problem and 'Game problem'.
4. Following figure shows a partial AND-OR graph with static evaluation values shown along with leaf nodes. Which is the best path from the root node A?

5. Draw an extended semantic network for "Rama gave the book to Sita".
6. Write a Prolog program to find the factorial of a number.
7. List the different phases in building an expert system.
8. Mention how Certainty Factor is calculated.
9. What is the drawback of a Single Layer Perceptron?
10. Define Gaussian function, clearly mentioning the terms that are involved in it.

> Part-B $(5 \times 10=50$ Marks)
> (All sub-questions carry equal marks)
11.a) List the constraints of a Graph coloring problem.

Using these constraints to color the given Graph G.
b) Draw the state space search for "Getting 90% marks in AI subject".
12.a) Apply α, β pruning on the following Game Tree where A is a Max Ply node:

b) Translate the following sentences to Clause form in Predicative Logic
i) John likes all kinds of Food.
ii) Apples are food
iii) Chicken is food
iv) Anything anytime eats and is not killed by is food
v) Bill eats peanuts and is still alive
vi) Srinu eats everything Bill eats
13.a) Construct a consistent frame representation for "Vasavi College of Engineering".
b) Explain the general syntax of a Prolog Program.
14.a) Distinguish between Monotonic \& Non-Monotonic TMS.
b) For the Bayesian Belief Network and the corresponding probabilities, generate the conditional probability table.

$\mathrm{P}(\mathrm{A})$	$=0.4$
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})$	$=0.5$
$\mathrm{P}(\mathrm{B} \mid \sim \mathrm{A})$	$=0.1$
$\mathrm{P}(\mathrm{C} \mid \mathrm{A})$	$=0.6$
$\mathrm{P}(\mathrm{C} \mid \sim \mathrm{A})$	$=0.3$
$\mathrm{P}(\mathrm{D} \mid \mathrm{A}, \mathrm{B})$	$=0.8$
$\mathrm{P}(\mathrm{D} \mid \mathrm{A}, \sim \mathrm{B})$	$=0.3$
$\mathrm{P}(\mathrm{D} \mid \sim \mathrm{A}, \mathrm{B})$	$=0.3$
$\mathrm{P}(\mathrm{D} \mid \sim \mathrm{A}, \sim \mathrm{B})$	$=0.05$

Compute the following probabilities:
i. Joint probability $\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$
ii. $\quad P(A \mid B, C)$
15.a) What are the limitations of Single-layer Perceptron? Explain how to overcome them.
b) How is error computed in a Feed Forward Network? Explain.
16.a) What are the characteristics of a Problem? Explain.
b) Differentiate between A^{*} and AO^{*} algorithms.
17. Answer any two of the following:
a) Distinguish between Semantic Networks and Extended Semantic Networks, using appropriate examples.
b) Suppose by observing E_{1} and E_{2}, we confirm our belief in H with $\mathrm{MB}\left[\mathrm{H}, \mathrm{E}_{1}\right]=0.6$ and $\mathrm{MD}[\mathrm{H}$, $\left.\mathrm{E}_{1}\right]=0.2, \mathrm{MB}\left[\mathrm{H}, \mathrm{E}_{2}\right]=0.3$ and $\mathrm{MD}\left[\mathrm{H}, \mathrm{E}_{2}\right]=0.0$. Then, compute the following:
i) $M B\left[H, E_{1}\right.$ and $\left.E_{2}\right]$ ii) $M D\left[H, E_{1}\right.$ and $\left.E_{2}\right]$ iii) $C F\left[H, E_{1}\right.$ and $\left.E_{2}\right]$
c) Build a Radial Basis Function Neural Network for XOR. Clearly show the weights that are associated in the network.

